
188 Developing a Building Identification Tool to Support Mass Deep Energy Retrofits 

Keywords:	Building Stock Model, Building Data, Typologies, 
Building Envelope, Machine Learning, Data Augmentation 
Process, Digital Tools, Mass Deep Energy Retrofits (DERs), 
Industrialized Construction, Building Information Modeling

Deep	 energy	 retrofits	 (DERs)	 are	 recognized	 as	 a	 critical	
strategy	 in	 reducing	 the	building	 sector’s	 greenhouse	gas	
(GHG)	 emissions1,2.	 Compared	 to	 shallow	 retrofits,	 DERs	
reduce	energy	demand	of	existing	buildings	by	up	to	50	to	
80%.		In	a	fabric	first	over-cladding	approach	to	DERs,	the	
insulation	 and	 airtightness	 of	 the	 building	 envelope	 are	
significantly	 improved,	 and	 the	 mechanical	 systems	 are	
replaced	with	smaller,	ultra-high-efficient	ones.	To	contribute	
in	a	meaningful	way	 to	 reaching	Canada’s	GHG	 reduction	
targets,	a	substantial	portion	of	the	existing	building	stock	
must	undergo	deep	 retrofitting4.	 To	achieve	 this,	 the	DER	
process—from	identification	of	candidate	buildings	to	the	
industrialized	 manufacture	 and	 installation	 of	 panelized	
envelope	solutions—must	be	streamlined,	affordable,	and	
scalable.	A	key	barrier	to	development	is	lack	of	access	to	
accurate	building	data	qualifying	and	quantifying	the	condi-
tion	of	the	existing	building	stock,	which	is	needed	to	assess	
the	pool	of	buildings	and	building	aggregations	with	a	high	
potential	for	deep	retrofit3.	Specifically,	data	characterizing	
building	 envelopes—from	 construction,	 form,	 material,	
and	openings	to	renovation	history	and	overall	fitness—are	
unavailable	for	the	full	building	stock	and	currently	can	only	
be	obtained	through	labor-intensive	on-site	inspections.	This	
paper	presents	the	framework	and	methodology	of	a	new	
web	application,	the	Building	Identification	Tool	(BIT),	which	
allows	one	to	remotely	source	and	survey	candidate	buildings	
with	a	high	potential	for	prefabricated	panelized	DER	(PPDER).	
BIT	allows	users	to	augment	a	preprocessed	geo-referenced	
building	dataset	with	information	relevant	to	PPDER,	facili-
tating	 the	 identification	of	 a	 scalable	pipeline	of	 projects	
that	are	amenable	to	mass	customizable	over-cladding	solu-
tions.	The	paper	also	explores	how	modern	machine	learning	
methods	could	eventually	be	used	to	automate	certain	stages	
of	the	data	augmentation	process.		

BACKGROUND AND INTRODUCTION
Existing financing and incentive programs in the Canadian build-
ing energy efficiency market have largely resulted in ad hoc, 
singular retrofit actions. These typically include the installation 
of high efficiency building technologies, such as heat pumps, 
LED lighting, and weatherization measures, which can result in 
30-50% energy savings. By comparison, a Deep Energy Retrofit 
(DER) approach can achieve energy reductions of 50-80%, 
where the driving factor is a major upgrade in the building en-
velope that dramatically reduces heating and cooling demand4. 
Beyond energy savings, DERs generate numerous benefits rang-
ing from enhanced occupant comfort to better indoor air quality, 
and long-term climate resilience5-7. Despite these advantages, 
very few DERs are currently realized annually although being a 
critical component in national efforts to meet decarbonization 
targets⁸. This is largely due to capacity deficiencies in terms of 
financing and implementation that could be at least partially 
alleviated with a streamlined process for identifying and deter-
mining aggregation scenarios suited to mass customization, bulk 
purchasing, and the efficiencies of scale of production.

Prefabricated Panelized DERs (PPDERs) aim to expedite and 
systematize retrofits through an integrative design and manu-
facturing process generally known as over-cladding. In this 
approach, panels are manufactured off-site and packaged to 
include structural support and attachments, thermal insulation, 
hygrothermal control membranes, flashings, fenestration, and 
cladding. These exterior retrofits are coupled with high-efficient 
retrofit-ready active systems. By focusing resources on off-site 
industrialized processes, PPDERs streamline implementation by 
minimizing waste, on-site construction time and tenant disrup-
tion, and by integrating most steps of the design and construction 
process into a single, high-quality controlled workflow and team.  

The current challenge for mass PPDER is that buy-in from diverse 
stakeholders cannot be achieved without data on the existing 
building stock to identify market-viable aggregation opportu-
nities13-15. Specifically, data are needed to characterize building 
envelopes and super-structures at the individual building-level 
within typologically consistent sets of buildings. These are 
difficult, if not impossible to obtain at scale with current labor-
intensive inspection processes: if, and when, such information is 
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available through large portfolio owners, datasets are often de-
centralized, proprietary, and contain information asymmetries. 
The absence of a consistent and sufficient datasphere remains 
a persistent hurdle to scaling PPDER effectively.

Some existing approaches attempt to understand the demand 
and potential impact of DERs at a building stock scale with lim-
ited data, including building stock models (BSMs), which often 
assess the characteristics, energy usage, and performance of the 
existing building stock. Diverse model types exist, ranging from 
top-down and statistical approaches to bottom-up, physics-
based models16-18. According to Langevin et al. (2020), bottom-up 
BSMs are best suited to evaluate the impact of new technologies 
when high spatial granularity is needed, as they are formulated 
to measure outputs at the individual building level according 
to physical simulations19,20. However, while the level of detail 
of BSM techniques is increasing21,22, existing bottom-up models 
continue to rely on aggregate data or representative building 
archetypes that may be helpful for high-level energy policy deci-
sions but are deficient for on-the-ground retrofit aggregation, 
owner investment, and implementation decision-making23.  

Street-view and satellite imagery from Google Maps are a 
promising means for collecting data about individual buildings 
at a large scale24,25. They have been used to generate building 
function maps at regional and urban scales in North America26, 
predict building function and architectural styles in Mexico27, 
and analyze building façade materials and reusable components 
in Barcelona and Zurich28. Satellite images have also been used 
independently to extract and detect the presence of build-
ings29,30, or to detect roof and material type31. They have yet to 
be used to assess wholistic conditions that determine suitability 
for retrofit.  

The Building Identification Tool (BIT) is a web application that 
collects data relevant to PPDER suitability for existing buildings 
at an individual-building level, to assist in identifying promising 

candidates and developing pipelines of PPDER projects (Figure 
1). BIT guides users through a survey of questions regarding 
each building’s characteristics based on street-view and satel-
lite images complemented with data extracted from an existing 
dataset such as the property assessment roll. The collected data 
are then compiled and stored in a database, allowing all build-
ings of a selected subset or type of building to be roughly and 
quickly characterized for PPDER suitability. These data can then 
be used to identify both individual candidate buildings and po-
tential building aggregation clusters, and from there, to quantify 
the potential for PPDER of a given building stock of the same 
typology and/or construction method.  

Building types are deemed to have PPDER potential based on 
five primary criteria: 1) structural and tectonic consistency that 
would engender a similar, and thus repeatable, over-cladding 
technical solution; 2) the sheer number of such buildings across 
the province capable of establishing a pipeline; 3) a vintage of 
building stock that would present a high number of “anyways” 
renovation scenarios; 4) societal and public sector relevance; 5) 
stable public sector investment opportunity at the municipal, 
provincial, and/or federal level.  

Based on these criteria, BIT was developed to identify 1) pre-
fabricated steel buildings typical of community centers, curling/
hockey rinks, and light manufacturing; 2) three- to five-story 
light-framed or concrete superstructure multi-unit residential 
buildings (MURBs) typical of 1950-80’s social housing programs 
that produced a large number of comparable buildings. A dis-
tinct database subset is constructed for each building type, to 
be processed separately. These building types were strategically 
chosen, as they lend themselves well to simplified over-cladding 
retrofit solutions due to their simple form factor. Many build-
ings of both types are owned by not-for-profit entities, which 
are more likely to have explicit GHG emission goals and dedi-
cated renovation budgets intended to protect and enhance the 

Figure 1. Workflow of PPDER development. The evaluation and decision-making process to design, manufacture, and install a PPDER solution has 
multiple steps with increasing levels of detail. BIT serves as the first step in this workflow, providing a quick and simple tool capable of enhancing 
low resolution data with the information needed to identify subsets of PPDER candidates for further analysis..
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longevity and resilience of their building stock and increase the 
well-being of its occupants.  

Social housing MURBs have additional advantages for early 
phase PPDER, as clusters of similar MURBs of the same age are 
often owned and operated by the same entity, making them 
optimal candidates for early phase pilot projects. In addition, 
federal agencies are currently allocating substantial funds to 
realize pilot project DERs of social housing buildings12. The re-
search team is working closely with Quebec’s housing agency, 
the Société d’habitation du Québec (SHQ), which oversees all 
social housing in the province. The goal is to develop a pipeline 
and workflow adapted to their MURB building stock and col-
laborate on a series of PPDER pilot projects.

 This paper describes the following aspects of BIT:  

• An overview of BIT’s structure and methodology, including 
the initial database construction, preprocessing steps, the 
user survey and the user interface; 

• a description of preprocessing steps specific to 1) prefabri-
cated steel buildings, and 2) social housing MURBs; 

• an initial presentation and discussion of how machine 
learning methods can be applied to automate parts of the 
retrofit candidate selection process.

BIT STRUCTURE AND WORKFLOW
Figure 2 shows the data processing workflow leading to BIT’s 
initial database, and how data collected through surveying aug-
ments the database. To accelerate data augmentation and make 
optimal use of users’ time, machine learning is used to preselect 
and order the candidate buildings shown to users. In addition, 
a collection of machine learning methods is explored to auto-
mate surveying, with preliminary results presented in the last 
sections of the paper. 

INITIAL DATABASE CONSTRUCTION
The initial database is populated using data from the 2022 
Quebec property assessment roll (hereafter “the Roll”)33, which 
covers buildings for the entire province of Quebec and is updat-
ed every three years. The buildings are organized into evaluation 
units (“units”, for short) containing one or more adjacent build-
ings. Each unit has a unique ID, street name, primary land-use 
code (CUBF) and tax-related property information. Additional 
fields of interest are available only for some units: the full ad-
dress, construction year, physical adjacency type (e.g., row 
house, single-family detached, etc.), the number of floors and 
the number of dwellings in the building.

Roll data fields are provided in XML and GIS Shapefile format. 
Custom parsers are used to query and combine data provided in 
both formats and store them in an SQL database. The availability 
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Figure 2. Diagram of BIT’s data preprocessing and augmentation flows. Starting in the top left, data are extracted from the Roll and split into two 
streams, potential steel buildings and residential buildings, each of which undergoes various preprocessing steps before storage in the initial BIT 
database (bottom right). BIT then shows the data to users for evaluation and augments the BIT database with their survey responses.
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of Streetview panoramas for each unit is verified; only units 
yielding a panorama are included. The CUBF code is used to 
select all units that might fall under one of the two desired build-
ing types: prefabricated steel community buildings, and social 
housing MURBs. The subsets for the two building types undergo 
further preprocessing separately.

BIT USER INTERFACE
The BIT user interface shows data from the initial database to 
users for each evaluation unit and prompts them to answer sur-
vey questions for that unit. Django ModelForms36 is used on the 
backend to easily construct a fillable survey from its database 
model, along with some custom fields and JavaScript code to im-
prove user experience. The system is designed with extensibility, 
effectiveness, and suitability in mind so that adding or removing 
questions is easy for future versions of the survey. 

When accessing BIT online for the first time, a user is directed 
to a landing page that explains the tool’s context and objectives, 
and where they are asked to create an account. Once registered, 
the user is taken to the survey page where data and images for 
the first evaluation unit are displayed in two side-by-side interac-
tive Streetview and Satellite Map windows, with a pin indicating 
the unit’s coordinates from the Roll, as shown in Figure 3.  

The survey (Table 1) appears in a separate tab as a scrollable 
list of questions. A user will commonly toggle back and forth 
between the survey and building views, and may virtually move 
around the building if obstructions occur from one viewing 

angle in Streetview, as they answer questions. A time travel 
functionality is implemented, enabling users to view the building 
conditions’ evolution through time, which may indicate façade 
renovations or reveal better views if vegetation obstructs the 
view during certain seasons. Once a user submits the survey, the 
responses are captured and associated to the evaluation unit in 
the database. The user is then directed to complete the survey 
for the next evaluation unit.  

As the user completes the survey, they are encouraged to record 
screenshots of the Streetview each time they observe new fa-
çades, change viewing angles, or notice something interesting. 
The Satellite view is automatically captured each time the user 
switches to the survey tab, and in cases where the user does 
not take screenshots, the last state of the Streetview is captured 
at survey submission. All images are uploaded asynchronously 
to servers to ensure the application remains responsive. This 
results in a dataset of images labelled with survey responses 
which can be used to finetune or train computer vision models to 
automate all or parts of the survey response process and reduce 
the need for human intervention in this phase of data collection. 

BIT	SURVEY	&	DEVELOPMENT
The current version of the user survey (Table 1) focuses on traits 
that can be gleaned from Streetview and satellite imagery that 
influence suitability for over-cladding or indicate an imminent 
need for retrofit. These traits complement or are redundant 
with information typically collected by professionals using 
Building Condition Assessments and energy audits to produce 

Figure 3. The BIT user interface displaying a sample unit. The Streetview image appears on the left, and satellite image on the right. The tabs 
above the satellite image allow the user to toggle between the satellite image and the survey. For HLM building types, the “HLMs” tab lists the 
HLMs present in the evaluation unit. Building information extracted from the property assessment roll is displayed at the top. The ‘Screenshot’ 
button is used to take additional screenshots from the Streetview, and the ‘Flag Problem’ button is used to flag units that have no building.
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and organize systematic roadmaps for deep retrofits (Building 
Renovation Passports)32. 

Though BIT has been tested exclusively with architecture stu-
dents as users, the goal is to eventually recruit users from the 
public. The survey questions are therefore designed to be simple, 
with a small number of answer options. For each question, visual 
examples are available through a pop-up information bubble, 
as well as an explanation of its relevance to the PPDER process. 
Answer options such as “unsure” and “other (specify)” allow a 
user to skip over tricky questions or note atypical configurations.  

To construct an initial coarse dataset of potential prefabricated 
steel community buildings, all Roll units with CUBF codes for 
educational, recreational and public gathering spaces are ex-
tracted, with the idea that these are most likely to contain this 
type of building. This approach casts a wide net: many units 
coded as recreational areas are parks and sports fields that do 
not contain a building and only a small proportion of these units 
are prefabricated steel buildings.  

A preprocessing step is developed to rank the units and deter-
mine which ones are most likely to contain a metal building. An 
image-text multimodal deep learning model9 is employed to 
perform a visual question answering (VQA) task on the unit’s 
Streetview panoramas. Two sets of questions are directed to the 
VQA to estimate 1) the probability P(B) that a building is present 
in the unit, and 2) the probability P(M) that a metal-clad building 
exists in the unit, as shown in Figure 4. P(M) and P(B) for each unit 

are computed by averaging all the values produced by the VQA 
model for every Streetview panorama obtained for that evalu-
ation unit, including those available from multiple angles and 
time-periods. Each question is considered as a binary test and 
Bayes’ theorem is applied using the empirically measured sensi-
tivity, specificity and prevalence to calculate the probabilities10

.

The estimated P(B) and P(M) values for each unit are theWn 
used to determine the order in which they are shown to users. 
Units most likely to have a metal building (high P(B) and P(M)) are 
shown first, followed by those likely to have a non-metal build-
ing, and those least likely to have a building of any kind (low P(B) 
and P(M)). Visual inspection of a random sample of the highest 
and lowest scored evaluation units shows promising results, with 
around 75% of the highest rated units being true positives, and 
none of the lowest rated ones being false negatives.

PREPROCESSING	FOR	MULTI-UNIT	RESIDENTIAL	
BUILDINGS
The initial database of MURBs is constructed through multiple 
preprocessing steps. The initial dataset is obtained by selecting 
all units in the Roll with a residential CUBF code. The resulting 
set of 2,729,617 units contains MURBs, single-family homes and 
individually listed condominiums, many of which appear in a 
same building. As a first step, the individual condominiums are 
aggregated into a single evaluation unit representing the full 
building using a composite key of the latitude, longitude, ad-
dress, municipality fields. The address and municipality fields are 
likely redundant for this operation. The result is the aggregation 

Table 1: Building Identification Survey 
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of 248,713 individually listed condos into 20,054 MURBs. By then 
removing all buildings that include fewer than 3 dwellings, the 
total number of residential MURBs of interest is thus reduced to 
206,246. While this resulting dataset will be valuable for future 
pipelines of privately owned MURBs, the building subset of im-
mediate interest includes only the social housing MURBs that are 
owned and operated by the SHQ, which are locally referred to 
as HLMs, from the French term habitations à loyer modique. The 
steps required to extract these from the larger MURB database 
are explained next.

PREPROCESSING FOR SOCIAL HOUSING MURBS
The second building type under study using BIT are social hous-
ing MURBs owned by the SHQ. The SHQ maintains a publicly 
available dataset of its HLMs, including an index that indicates 
their state of disrepair. This index is of strategic importance for 
retrofit planning, as the added costs of realizing PPDER for build-
ings requiring major renovations should be marginal relative to 
conventional retrofits.  

The initial database of social housing MURBs is produced by 
cross-referencing the HLM dataset with the MURBs dataset 
described in the previous section. While this operation is con-
ceptually simple, it is complicated in practice by issues such as 
inconsistent abbreviations, incomplete addresses, and multiple 
buildings located within a single Roll unit. For example, units 

located in northern communities are underrepresented in the 
BIT database due to the absence of Streetview imagery in the 
Google API and the omission of the municipality field in the Roll 
for some units. When direct lookups of SHQ addresses in the 
Roll, approximated “fuzzy” matching is used on the municipal-
ity and street names, and the street numbers are checked for 
inclusion within the Roll unit range. As a result, 4,637 out of 7,373 
entries in the SHQ dataset are successfully cross-referenced to 
the Roll data. Filtering for buildings with three or more dwellings 
yields 3,140 HLMs mapped to 2,338 unique evaluation units.

SURVEY	AUTOMATION	-	MACHINE	LEARNING	
EXPERIMENTS
Given the large size of the datasets to be evaluated, it is desir-
able to have as many parts of the BIT workflow performed by 
machine learning as possible instead of by human users. As a first 
step towards evaluating this potential, answers from a machine 
learning model are compared to answers collected from users 
about the roof type and number of floors in the current MURBs 
BIT dataset. The open-source BRAILS framework is used, which 
provides pre-trained models for these purposes34, 35, working 
from Streetview screenshots saved by BIT users. 

The BRAILS NFloorDetector model detects the number of floors 
using the EfficientDet-D4 architecture, by drawing a bounding 
box around detected floors and counting the number of bounding 
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Evaluation Unit 
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Figure 4. (A) Diagram showing the VQA workflow. A set of panoramas is obtained from the Streetview API and submitted to the VQA model along 
with a set of questions. P(B) and P(M) are estimated and averaged over the panoramas of the unit. (B) The list of questions asked for each test. 
Sensitivity indicates how often the model accurately predicts the presence of a building, and specificity, its absence. (C) An example of model 
results for images from eight different units. Images in the upper row are rated by the model as more likely to have a building according to Test 
TB and those in the right-hand quadrants are rated as more likely to have a metal building (Test TM). Units with high P(B) and P(M) values (top 
right quadrant) are most likely to include a metal building.
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boxes, as shown in Figure 5. The BRAILS results were only accu-
rate 52% of the time compared to the user responses for 343 
MURBs in the BIT dataset. The model often overestimates the 
number of floors when an adjacent building is visible, as shown 
in the middle image. This issue partly arises because the model, 
developed using data from New Jersey's single-family (50.0%), 
multi-family (32.2%), and commercial buildings (17.8%), may not 
be suitable for Quebec's MURBs or multi-family buildings, given 
that the model was not trained for this specific building type. 
Additionally, the BIT screenshots taken by BIT users had more 
obstructions such as trees and vehicles, adjoining buildings and 
acute lateral viewing angles. The model performance might be 
improved by more suitable and higher quality images or if it can 
be adjusted to consider only those bounding boxes that are verti-
cally aligned in its count. 

To test roof classification prediction, images from the BRAILS 
dataset sourced from OpenStreetMaps were used34 to train the 
model. The dataset consists of 6,000 labeled satellite images, 
with 2,000 examples each for “flat”, “gabled”, and “hipped” roof 
types. “Gabled” and “hipped” categories mere merged into a 
single “not flat” category to align with the roof type categoriza-
tion in the BIT survey, forming a dataset with 2000 examples of 
“flat” roofs and 4000 examples of “not flat” roofs. The dataset 
was randomly split into 5000 images for training and 1000 im-
ages for testing. The resulting model trained on ResNet-1835 had 
a training accuracy of 89.3 %, and a testing accuracy of 86.5 % 
on the BRAILS dataset. It had an accuracy of 80% when tested 
on 60 BIT satellite images.

DISCUSSION 
The workflow and tool described here were developed in an 
iterative way by a team of researchers from computer sci-
ence, architecture and engineering with a diverse range of 
experiences and expertise. While many of the processes and 

components may appear simple, they are the result of multiple 
cycles of discussion, development, testing, and refinement. The 
survey and interface were adapted based on feedback from 
many team members, collaborators and students to improve 
clarity and user experience. Few programming details and chal-
lenges related to querying, preprocessing and analyzing data are 
described here for the sake of brevity and to engage with the 
intended audience of architects; such details will be covered in 
a subsequent publication.

Among the limitations of BIT affecting its accuracy is that 
Streetview imagery for some units may be outdated. In particu-
lar, imagery for remote locations may date from many years or 
even a decade ago. There is also potential for inaccuracies in 
the collected data since BIT gathers data through user input. 
However, the resulting database will be further augmented and 
verified through additional rounds of information gathering in 
the path towards identifying a PPDER pipeline, so false positives 
from BIT will be identified and eliminated along the way.

To scale up the data collection process, the research team in-
tends to release BIT to the public and explore ways to incentivize 
citizens to participate in the research effort, in a “citizen sci-
ence” manner, including gamifying the process and developing 
a communications campaign with a positive mission narrative. 
Different surveys may be developed and directed to different 
user categories, based on their reported or assessed level of 
expertise. Future work includes the progressive development 
of machine learning models, and an automated survey workflow 
integrated with a PPDER suitability scoring function to rank build-
ing candidates. This will entail detecting and analyzing building 
features from images and roll data and automatically answering 
survey questions based on this information.

Figure 5. Examples of number of floors image prediction.  
Left to right: (1) Correct prediction of 3 storeys. (2) Incorrect prediction of 3 storeys (correct value is 2). The building erroneously included floors 
detected on the neighbouring building (boxes that are not vertically aligned) in its count. (3) Incorrect prediction of 5 storeys (correct value is 3). 
Images with a steep lateral viewing angle decrease model performance.
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CONCLUSION
PPDERs are emerging as a vital component in reducing GHG 
emissions from the building sector in Canada. By streamlining the 
retrofit process—beginning with the identification of aggregate 
candidate buildings—and focusing on high-quality, controlled 
manufacturing and installation workflows, PPDERs hold the 
potential not only for significant energy reductions but also for 
enhancing occupant comfort, indoor air quality, and resilience.

The BIT application addresses the lack of suitable large-scale 
datasets for PPDER assessment by generating bottom-up build-
ing data through novel data collection techniques. It augments 
an initial database with Google Streetview, satellite images, 
and user-generated data. BIT is currently employed to analyze 
the existing MURBs stock and prefabricated metal community 
buildings in Quebec to identify suitable candidates for PPDER 
interventions. Machine learning is used to automate parts 
of the workflow to quickly characterize and rank a large vol-
ume of buildings.

BIT is part of a larger suite of custom tools and approaches that 
are in development with collaborators to support the rapid ex-
pansion of PPDERs. Development of BIT will continue within this 
larger suite, as these tools are expected to play a critical role 
in facilitating strategic investment and developing the neces-
sary capacity to realize PPDERs at scale. The successful scaling 
of PPDERs will be a critical step towards achieving national and 
global environmental goals, again underscoring the importance 
of this research in the broader context of energy efficiency and 
climate action.
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